home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Rice plant resists arsenic - Chinese-German research team discovers plant variant that largely neutralises the toxin
Reispflanze trotzt Arsen - Deutsch-chinesisches Forschungsteam entdeckt Pflanzenvariante, die den Giftstoff weitgehend neutralisiert


Heidelberg, Germany
March 2, 2021


Reispflanze astol1
Rice plant astol1 - Credit: Sheng-Kai Sun / Nature Communications
 

The agricultural cultivation of the staple food of rice harbours the risk of possible contamination with arsenic that can reach the grains following uptake by the roots. In their investigation of over 4,000 variants of rice, a Chinese-German research team under the direction of Prof. Dr Rüdiger Hell from the Centre for Organismal Studies (COS) of Heidelberg University and Prof. Dr Fang-Jie Zhao of Nanjing Agricultural University (China) discovered a plant variant that resists the toxin. Although the plants thrive in arsenic-contaminated fields, the grains contain far less arsenic than other rice plants. At the same time, this variant has an elevated content of the trace element selenium.

The researchers explain that especially in agricultural regions in Asia, increasing amounts of the metalloid arsenic get into the groundwater through large-scale fertilisation or wastewater sludge, for example. Because rice is cultivated in submerged fields, the plants absorb a good deal of arsenic through the roots, thus giving the potential carcinogen a pathway into the food chain. According to Prof. Hell, arsenic pollution in some soils in Asia is now so high that it is also causing significant crop losses because the arsenic is poisonous to the plants themselves.

In the course of their research project, the scientists exposed over 4,000 rice variants to water containing arsenic and then observed their growth. Only one of the plants studied proved to be tolerant against the toxic metalloid. What biologically characterises the rice variant called astol1 is a so-called amino acid exchange in a single protein. "This protein is part of a sensor complex and controls the formation of the amino acid cysteine, which is an important component in the synthesis of phytochelatins. Plants form these detoxifying substances in response to toxic metals and thus neutralise them," explains Prof. Hell, who together with his research group at the COS is studying the function of this sensory complex. The neutralised arsenic is stored in the roots of the plant before it reaches the edible rice grains and can endanger humans.

In the field study, astol1 rice grains absorbed one third less arsenic than conventional rice grains that were also exposed to arsenic-contaminated water. The researchers further discovered a 75 percent higher content of the essential trace element selenium, which is involved in the production of thyroid hormones in humans. As for yield, astol1 is just as good as the standard high-yield rice variants, making it especially suitable for agricultural use.

"In future, rice plants like astol1 could be used in arsenic-contaminated regions to feed the population as well as help fight diet-related selenium deficiency," states Dr Sheng-Kai Sun with optimism. The junior researcher was instrumental in discovering the rice variant during the course of his PhD work at Nanjing Agricultural University. Thanks to a scholarship from the Alexander von Humboldt Foundation, he has been working since last year at the Centre for Organismal Studies in the groups of Prof. Hell and Dr Markus Wirtz to investigate the sensor complex causing the astol1 phenotype.

The basic research into this sensor complex is being funded by the German Research Foundation. The research results were published in the journal Nature Communications.


Reispflanze trotzt Arsen

Deutsch-chinesisches Forschungsteam entdeckt Pflanzenvariante, die den Giftstoff weitgehend neutralisiert

Der landwirtschaftliche Anbau des Grundnahrungsmittels Reis birgt das Risiko einer möglichen Belastung mit Arsen, das über die Wurzeln in die Körner gelangen kann. Ein deutsch-chinesisches Forschungskonsortium unter der Leitung von Prof. Dr. Rüdiger Hell vom Centre for Organismal Studies (COS) der Universität Heidelberg und Prof. Dr. Fang-Jie Zhao von der Landwirtschaftlichen Universität Nanjing (China) hat nun bei der Untersuchung von über 4.000 Reisvarianten eine Pflanze entdeckt, die dem Giftstoff trotzt. Obwohl sie auf arsenbelasteten Feldern gedeiht, enthalten ihre Körner dennoch deutlich weniger Arsen als andere Reispflanzen. Zugleich verfügt diese Variante über einen hohen Anteil des Spurenelements Selen.
 

Reispflanze astol1
Reispflanze astol1 | © Sheng-Kai Sun / Nature Communications
 

Wie die Forscher der Studie erläutern, gelangen vor allem in asiatischen Anbaugebieten zunehmend größere Mengen des Halbmetalls Arsen ins Grundwasser, etwa infolge von großflächigen Düngungen oder über Klärschlamm. Da Reis auf unter Wasser stehenden Feldern angebaut wird, saugt er über die Wurzeln besonders viel Arsen auf. Zu den Folgen gehört, dass der potentiell krebserregende Stoff auf diese Weise in die Nahrungskette gelangt. Die Arsenbelastung in einigen asiatischen Böden ist nach Angaben von Prof. Hell mittlerweile so hoch, dass sie zu bedeutenden Ernteverlusten führt, denn Arsen ist auch für Pflanzen giftig.

Im Rahmen ihrer Forschungen haben die Wissenschaftler über 4.000 Reisvarianten arsenhaltigem Wasser ausgesetzt und ihr Wachstum beobachtet. Nur eine der untersuchten Pflanzen erwies sich dabei als tolerant gegenüber dem giftigen Halbmetall. Was diese Reisvariante mit dem Namen astol1 biologisch auszeichnet, ist eine sogenannte Punktmutation in nur einem Protein: „Dieses Protein ist Teil eines Sensor-Komplexes und kontrolliert die Bildung der Aminosäure Cystein, die ein wichtiger Grundstoff für die Herstellung von Phytochelatinen ist. Diese Substanzen besitzen eine entgiftende Wirkung und werden von Pflanzen als Reaktion auf Schadstoffe gebildet, um diese zu neutralisieren“, erklärt Prof. Hell, der mit seiner Forschungsgruppe am COS die Funktion dieses sensorischen Komplexes erforscht. Das neutralisierte Arsen wird in den Wurzeln der Pflanze eingelagert, bevor es die essbaren Reiskörner erreicht und dem Menschen gefährlich werden kann.

Im Feldversuch enthielten astol1-Reiskörner ein Drittel weniger Arsen als herkömmliche Reiskörner, die ebenfalls dem arsenhaltigen Wasser ausgesetzt waren. Die Forscher fanden zudem einen um 75 Prozent erhöhten Anteil des lebensnotwendigen Spurenelements Selen, das etwa an der Produktion von Schilddrüsenhormonen beteiligt ist. Hinsichtlich der Kornausbeute unterscheidet sich astol1 nicht von gängigen Hochertrag-Reisvarianten. Diese Pflanze eignet sich daher in besonderer Weise für eine landwirtschaftliche Nutzung.

„In der Zukunft könnten Reispflanzen wie astol1 in arsenbelasteten Regionen zur Ernährung der Bevölkerung eingesetzt werden und zugleich einen Beitrag zur Bekämpfung von ernährungsbedingtem Selenmangel leisten“, hofft Dr. Sheng-Kai Sun. Der Nachwuchswissenschaftler war im Rahmen seiner Promotion an der Landwirtschaftlichen Universität Nanjing maßgeblich an der Entdeckung der Reisvariante beteiligt. Mit einem Stipendium der Alexander von Humboldt-Stiftung forscht er seit dem vergangenen Jahr am Centre for Organismal Studies in den Forschungsgruppen von Prof. Hell und Dr. Markus Wirtz zum Sensor-Komplex von astol1.

Die Grundlagenforschung zu diesem Sensor-Komplex wird von der Deutschen Forschungsgemeinschaft gefördert. Die Veröffentlichung der Forschungsergebnisse erfolgte in der Fachzeitschrift „Nature Communications“.

Originalpublikation

S.K. Sun, X. Xu, Z. Tang, X.Y. Huang, M. Wirtz, R. Hell, F.J. Zhao: A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain (2021). Nature Communications,

 



More news from:
    . University of Heidelberg
    . Nanjing Agricultural University


Website: http://www.uni-heidelberg.de

Published: March 2, 2021

The news item on this page is copyright by the organization where it originated
Fair use notice

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Archive of the news section

 

 


Copyright @ 1992-2024 SeedQuest - All rights reserved