Halle, Germany
August 15, 2019
A Phytophthora spore penetrates the leaf epidermis cell of an Arabidopsis plant whose immune system has previously been weakened by mutations. Photo: Lore Westphal, IPB
Eine Phytophthora-Spore dringt in die Blatt-Epidermiszelle einer Arabidopsispflanze ein, deren Immunsystem zuvor durch Mutationen geschwächt wurde. Foto: Lore Westphal, IPB
If we consider the most serious plant diseases of our time, potato blight would definitely be near the top, with its pathogen - Phytophthora infestans - having triggered major famines in Europe as early as the mid-19th century and is, even today, still responsible for major crop losses. Scientists at the Leibniz Institute of Plant Biochemistry (IPB) in Halle (Germany) have spent more than two decades investigating late blight. To shed more light on the mechanisms of disease development, they focus not only on determining why the pathogen causes disease on its host plant potato, but also its inability to successfully colonize most other plants. This so-called non-host resistance against the infestation of P. infestans has been investigated on thale cress Arabidopsis thaliana. Led by Professor Sabine Rosahl, the Halle researchers were able to isolate two new substances from the model plant, which play key roles in defending against Phytophthora. Although one of these newly discovered indole compounds had no direct effect on the pathogen, the substance is thought to play a signaling role and enhance the plant's defense reaction. This finding was published in Journal of Biological Chemistry.
Like all living beings, plants are constantly surrounded by potential pathogens, but rarely succumb to the same. This is because, like animals, plants have a similar kind of basic immunity that successfully prevents them from being colonized by microbial germs. Most plants muster multiple defense responses, which helps them avoid becoming hosts to the pathogens and, thus keeps a broad spectrum of invaders in check.
First and foremost, non-host resistance is dependent on recognizing the enemy, a task performed by receptors in the plant cell membrane that specialize in binding microbial surface structures such as fungal chitin or bacterial flagellin. The process of binding the microbial molecules activates the receptor and lets it transmit an ‘enemy alert’ to the cell interior and from there, via complex signal cascades, to the cell nucleus. This is the venue for activating various defense genes, which then initiate the production of biosynthesis enzymes. These enzymes produce abundant antimicrobial substances that either kill the pathogen or preclude any further germs from entering the cells by reinforcing the local cell walls.
An in-depth investigation is now underway by the scientists from Halle to find precisely which genes, proteins and enzymes are involved in the non-host resistance of thale cress. Professor Rosahl's group is also particularly interested in the various defense substances produced by Arabidopsis to combat pathogens such as Phytophthora. As part of these efforts, small droplets of a Phytophthora spore solution were applied to the Arabidopsis plant leaves, while water droplets on the leaves of other Arabidopsis plants served as controls. After 24 hours, an inventory was then taken of all the metabolites present in the droplets and surrounding leaf tissue in a metabolite profiling process, which clearly revealed the following: The plants infected with Phytophthora showed a strongly activated metabolism, with numerous substances in both the droplets and surrounding leaf tissue, which were undetectable in the control plants.
In addition to known substances, often with antimicrobial properties, two previously unknown indole compounds came to light: 4-methoxyindole-3-methanol and 4-methoxyindole-3-methylcysteine. Interestingly enough, neither showed antimicrobial properties since they did not inhibit the growth of Phytophthora hyphae. However, the former induced a weak but highly significant increase in calcium ions in the Phytophthora-infected Arabidopsis cells. "Boosting the intracellular calcium ions in this way paves the way for resistance early on," explains Sabine Rosahl. "It enables the interaction of signaling proteins and equates to a general state of alarm from a defense perspective." 4-methoxyindole-3-methanol also increased the pathogen-induced cell wall reinforcement. And the conclusion of Professor Rosahl: "We therefore assume that this newly discovered compound actually works to modulate and enhance the natural immune response of non-host resistance" - although precisely how remains unclear for now.
The findings obtained inside and outside the affected plant cells revealed how a successful defense reaction requires not only functional biosynthesis enzymes, but also transport proteins that actively channel the defensive substances produced from the plant cell to the site of the wound. However, although this transporter protein (PEN3) was isolated some years previously in Arabidopsis, the task of attributing any defense-relevant substance for this protein, which was actually transported out of the cell, had proved elusive. Now, however, that hurdle has been crossed in the present study. Collaboration with Swiss scientists revealed that the newly discovered indole compounds were transported by the PEN3 transporter from the cells to the leaf surfaces.
At the IPB, the insights gained from the model plant in turn affects the knowledge of the disease in the crop plant. Potato plants also produce antimicrobial substances following infestation with Phytophthora, which would be actively transported to the leaf surface under normal circumstances. In potatoes, however, the process of transporting certain antimicrobial substances appears to be disturbed; something which the Halle plant researchers were able to prove a few years ago for one specific substance named coumaroylagmatine. Following infection with the pathogen, the hydroxycinnamic acid compound accumulated only within the potato leaves, but not on the leaf surface. By introducing an intact transporter protein from Arabidopsis, Sabine Rosahl's team could boost the immune reaction of potato plants to Phytophthora to a considerable extent, although completely stopping the onset of late blight in its tracks proved a bridge too far. This points to the presence of other weaknesses in the potato's immune system.
Meanwhile, the question of how Phytophthora managed to make the potato its host plant over the course of time remains tantalizing. The scientists from Halle will continue leveraging a successful combination of basic and application-oriented research into model and cultivated plants as part of ongoing efforts to answer such questions in future.
Background information: Phytophthora infestans
Phytophthora infestans, the pathogen of late blight in potatoes, belongs to the class of oomycetes, representative forms of which constitute a transitional form between fungi and brown algae. The pathogen spreads via spores that penetrate the leaf tissue and proceed to colonize the entire plant from there. If the spores are washed into the soil after rainfall, they also attack the tubers, which then become brown and inedible. The disease spreads rapidly and can infect entire fields in a matter of days. Although the use of fungicides to ward off Phytophthora has been moderately successfully to date, the very mutagenic nature of the pathogen enables it to quickly develop resistance to the pesticides used.
Original publication:
Andreas Matern, Christoph Böttcher, Lennart Eschen-Lippold, Bernhard Westermann, Ulrike Smolka, Stefanie Döll, Fabian Trempel, Bibek Aryal, Dierk Scheel, Markus Geisler & Sabine Rosahl. A substrate of the ABC transporter PEN3 stimulates bacterial flagellin (flg22)-induced callose deposition in Arabidopsis thaliana. Journal of Biological Chemistry (2019) 294, 6857-6870.
Dem Geheimnis kranker Pflanzen auf der Spur
Die Kraut- und Knollenfäule der Kartoffel ist eine der bedeutendsten Pflanzenkrankheiten unserer Zeit. Ihr Erreger, Phytophthora infestans, hat bereits Mitte des 19. Jahrhunderts für große Hungersnöte in Europa gesorgt und verursacht noch heute weltweite Ernteausfälle von etwa 20 Prozent im Jahr. Wissenschaftler des Leibniz-Instituts für Pflanzenbiochemie (IPB) in Halle erforschen die Kraut- und Knollenfäule seit mehr als zwei Dekaden. Um die Mechanismen der Krankheitsentstehung besser zu verstehen, fragen sie sich nicht nur, warum der Erreger seine Wirtspflanze, die Kartoffel, krank macht, sondern auch, warum er die meisten anderen Pflanzen nicht erfolgreich besiedeln und krank machen kann. Diese sogenannte Nichtwirtsresistenz gegen den Befall von P. infestans wird an der Ackerschmalwand Arabidopsis thaliana untersucht. Aus der Modellpflanze konnten die Hallenser Forscher um Professor Sabine Rosahl zwei neue Substanzen isolieren, die eine wichtige Rolle bei der Abwehr von Phytophthora spielen. Eine der neu entdeckten Indol-Verbindungen wirkt dabei nicht direkt auf den Erreger, sondern sorgt vermutlich als Signalstoff für die Verstärkung der pflanzlichen Abwehrreaktion. Der Befund wurde in der Fachzeitschrift Journal of Biological Chemistry veröffentlicht.
Pflanzen sind wie alle Lebewesen permanent von potentiellen Krankheitserregern umgeben. Dennoch werden sie selten krank. Denn ähnlich wie Tiere verfügen auch Pflanzen über eine Art Basis-Immunität, die ihre Besiedlung durch mikrobielle Keime erfolgreich verhindert. Durch vielfache Abwehrreaktionen gelingt es den meisten Pflanzen, nicht zur Wirtspflanze der Erreger zu werden, sondern vielmehr Nichtwirt zu bleiben und mit ihrer Nichtwirtsresistenz ein breites Spektrum an Invasoren in Schach zu halten.
Erste Voraussetzung für die Nichtwirtsresistenz ist die Erkennung des Feindes. Dies geschieht durch Rezeptoren in der pflanzlichen Zellmembran, die darauf spezialisiert sind, mikrobielle Oberflächenstrukturen wie das pilzliche Chitin oder das bakterielle Flagellin an sich zu binden. Durch die Bindung der Mikroben-Moleküle aktiviert sich der Rezeptor; er kann nun das Signal Achtung Feind ins Innere der Zelle weiterleiten, wo es über komplexe Signalkaskaden bis in den Zellkern übertragen wird. Hier erfolgt die Aktivierung von verschiedenen Abwehrgenen, die daraufhin die Herstellung von Biosynthese-Enzymen initiieren. Diese Enzyme produzieren eine Vielzahl an antimikrobiellen Substanzen, die entweder den Erreger abtöten oder durch lokale Zellwandverstärkung verhindern, dass weitere Keime in die Zellen eindringen können.
Welche Gene, welche Proteine und Enzyme an der Nichtwirtsresistenz der Ackerschmalwand beteiligt sind, wird von den Hallenser Wissenschaftlern intensiv untersucht. In der Gruppe von Professor Rosahl interessiert man sich darüber hinaus besonders für die verschiedenen Abwehrsubstanzen, die Arabidopsis produziert, um Erreger wie Phytophthora zu bekämpfen. Um das herauszufinden, brachte man auf die Blätter von Arabidopsispflanzen kleine Tröpfchen einer Phytophthora-Sporenlösung auf. Parallel dazu applizierte man im Kontroll-Experiment Wassertröpfchen auf die Blätter von weiteren Arabidopsispflanzen. Nach 24 Stunden wurden die Tröpfchen und auch das sie umgebende Blattgewebe einer Bestandsaufnahme aller vorhandenen Stoffwechselprodukte unterzogen. Das Ergebnis dieses Metaboliten-Profilings zeigte klar: Die mit Phytophthora infizierten Pflanzen wiesen einen stark aktivierten Stoffwechsel auf. Sowohl in den Tröpfchen als auch im umgebenden Blattgewebe fand man eine Vielzahl von Substanzen, die in den Kontrollpflanzen nicht nachweisbar waren.
Neben bereits bekannten, oftmals antimikrobiell wirkenden Substanzen, fand man zwei bisher unbekannte Verbindungen: das 4-Methoxyindol-3-methanol und das 4-Methoxyindol-3-methylcystein. Interessanterweise wiesen die beiden Indol-Verbindungen keine antimikrobiellen Eigenschaften auf; das Wachstum der Phytophthora-Hyphen wurde durch sie nicht gehemmt. Eine der beiden Verbindungen, das 4-Methoxyindol-3-methanol, löste jedoch eine schwache, aber hoch signifikante Erhöhung der Calcium-Ionen in den Phytophthora-infizierten Arabidopsiszellen aus. „Der intrazelluläre Anstieg von Calcium-Ionen ist ein frühes Signal der Abwehr“, erklärt Sabine Rosahl. „Er begünstigt die Interaktion der Signalproteine und kommt im Abwehrszenario einem allgemeinen Alarmzustand gleich.“ Auch die Erreger-induzierte Zellwandverstärkung wurde durch 4-Methoxyindol-3-methanol gesteigert. „Wir vermuten daher“, sagt Professor Rosahl, „dass diese neu entdeckte Verbindung eher eine Substanz ist, die die natürliche Immunantwort der Nichtwirtsresistenz moduliert und verstärkt“. Wie genau das passiert, bleibt in Zukunft zu klären.
Nach den erzielten Befunden innerhalb und außerhalb der befallenen Pflanzenzellen erfordert eine erfolgreiche Abwehrreaktion nicht nur funktionstüchtige Biosynthese-Enzyme, sondern auch Transportproteine, die die produzierten Abwehrstoffe aktiv aus der Pflanzenzelle hinaus an den Ort der Verwundung befördern. Ein solches mutmaßliches Transportprotein (PEN3) wurde vor einigen Jahren in Arabidopsis gefunden. Bisher konnte man zu diesem Protein jedoch noch keine Abwehr-relevante Substanz identifizieren, die von ihm tatsächlich aus der Zelle transportiert wird. In der aktuellen Studie ist dies nun gelungen. In Kooperation mit Wissenschaftlern aus der Schweiz konnte gezeigt werden, dass die neu entdeckten Indol-Verbindungen vom PEN3-Transporter aus den Zellen heraus auf die Blattoberflächen befördert werden.
Der Erkenntnisgewinn aus der Modellpflanze beeinflusst am IPB immer wieder auch das Wissen um die Krankheit in der Kulturpflanze. Auch die Kartoffel produziert nach Befall mit Phytophthora antimikrobielle Substanzen, die normalerweise aktiv auf die Blattoberfläche transportiert werden sollten. Der Transport von einigen keimabtötenden Stoffen scheint aber bei der Kartoffel gestört zu sein. Das konnten die Hallenser Pflanzenforscher vor einigen Jahren zumindest für eine konkrete Substanz, das Coumaroylagmatin, nachweisen. Die Hydroxyzimtsäureverbindung reicherte sich nach Infektion mit dem Erreger nur innerhalb der Kartoffelblätter, nicht aber auf deren Außenseite an. Durch das Einbringen eines intakten Transportproteins gelang es dem Team um Sabine Rosahl, die Immunreaktion der Kartoffelpflanzen auf Phytophthora stark zu erhöhen. Dennoch konnte die Ausprägung der Kraut- und Knollenfäule damit nicht vollständig eingedämmt werden. Es muss also weitere Schwachstellen im Immunsystem der Kartoffel geben.
Wie es Phytophthora im Laufe der Evolution gelang, die Kartoffel zu seiner Wirtspflanze zu machen, bleibt eine spannende Frage auf diesem Gebiet. Mit ihrer erfolgreichen Kombination von Grundlagen- und anwendungsorientierter Forschung an Modell- und Kulturpflanzen werden die Hallenser Wissenschaftler auch künftig zu ihrer Beantwortung beitragen.
Hintergrundinformation zu Phytophthora infestans:
Phytophthora infestans, der Erreger der Kraut- und Knollenfäule bei Kartoffeln, gehört zur Klasse der Oomyceten, deren Vertreter eine Übergangsform zwischen Pilzen und Braunalgen darstellen. Der Erreger verbreitet sich über Sporen, die in das Blattgewebe eindringen und von dort aus die gesamte Pflanze besiedeln. Werden die Sporen bei Regen in den Boden gespült, befallen sie auch die Knollen, die sich braun verfärben und ungenießbar werden. Die Krankheit überträgt sich schnell und kann in wenigen Tagen ganze Felder infizieren. Bisher bekämpft man Phytophthora mäßig erfolgreich mit Fungiziden. Da der Erreger sehr mutationsfreudig ist, entwickelt er jedoch schnell Resistenzen gegen die eingesetzten Pflanzenschutzmittel.
Originalpublikation:
Andreas Matern, Christoph Böttcher, Lennart Eschen-Lippold, Bernhard Westermann, Ulrike Smolka, Stefanie Döll, Fabian Trempel, Bibek Aryal, Dierk Scheel, Markus Geisler & Sabine Rosahl.
A substrate of the ABC transporter PEN3 stimulates bacterial flagellin (flg22)-induced callose deposition in Arabidopsis thaliana.
Journal of Biological Chemistry (2019) 294, 6857-6870.