News section

home  |  news  |  solutions  |  forum  |  careers  |  calendar  |  yellow pages  |  advertise  |  contacts

 

A biochemical regulator described by UC Riverside plant biologist explains how plants protect themselves from cold temperatures
Riverside, California
May 16, 2006
 
In response to cold, plants trigger a cascade of genetic reactions that allow them to survive. University of California, Riverside Professor of Plant Cell Biology Jian-Kang Zhu has described how a little-known biochemical reaction regulates that genetic cascade.

Zhu’s findings were published in the May 15 online version of the Proceedings of the National Academy of Sciences in a paper titled The Negative Regulator of Plant Cold Responses, HOS1 is a RING E3 Ligase That Mediates the Ubiquitation and Degredation of ICE1. Zhu co-authored the paper with UCR colleagues Chun Hai Dong and Manu Agarwal; and Yiyue Zhang and Qi Xie, from the Institute of Genetics and Development of the Chinese Academy of Sciences in Beijing.

This negative regulator, known as high expression of osmotically responsive gene 1 (HOS1), acts essentially as a biochemical gate that cuts off the plant’s cold protection, Zhu said. The HOS1 gene product interacts with another gene product known as ICE1 that kicks off the genetic cascade that provides the plant’s cold protection proteins, according to the paper. The interaction worked both in the test tube and in the live plant.

“The better we understand this molecular mechanism, the better we can control the process of increasing the plant’s freezing tolerance without causing negative impacts,” Zhu said. “This process should apply to all plants and can help us better use crops of subtropical origin such as corn, rice, avocadoes and strawberries.”

Zhu said the discovery of how HOS1 acts on plants should help his overall research efforts into how plants respond to environmental stresses such as cold, soil salinity and drought.

“From a genetic and molecular standpoint, these responses are all related,” Zhu said. “Some of the same genes are involved in all of these responses and understanding how they work can help us develop crops that can better withstand these conditions.”

Zhu said he plans on continuing his research on how HOS1 and ICE1 recognize each other and work together to help plants deal with cold weather conditions. This line of inquiry should better explain how plant cells initially respond to cold and other adverse conditions.

Related link: The College of Natural and Agricultural Sciences at UCR


The University of California, Riverside is a major research institution. Key areas of research include nanotechnology, health science, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of more than 16,600, the campus is projected to grow to 21,000 students by 2010. Located in the heart of Inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region's economic development.
News release

Other news from this source

15,792

Back to main news page

The news release or news item on this page is copyright © 2006 by the organization where it originated.
The content of the SeedQuest website is copyright © 1992-2006 by SeedQuest - All rights reserved
Fair Use Notice