February 4, 2003
"ARS Is Banking on Germplasm"
from
Agricultural Research magazine.
By David Elstein, Agricultural
Research Service Information Staff.
"ARS Is Banking on Germplasm" was published in the
February 2003
issue of Agricultural Research magazine.
The main functions of banks are to hold depositors' money safely, to
lend some of that money to others, and to invest for the future.
The Agricultural Research Service
operates its own network of "banks" that make up the National
Plant Germplasm System. But instead of money, the 20 repositories and
support units that make up the system hold germplasm for scientists
to study, for breeders to grow, and for land managers to use. "Germplasm"
refers to the parts of plants and animals that are needed for reproduction,
like seeds or semen. ARS wants to maintain genetic diversity in plants
and animals collected from around the world—particularly populations
that are dying out or are no longer available because of greater restrictions
in international germplasm exchange.
About an hour's drive north of Denver on the campus of Colorado State
University is the National Center for Genetic Resources Preservation
(NCGRP), formerly known as the National Seed Storage Laboratory—the
central bank of the system. Nearly half a million samples of germplasm
are stored on four floors, similar to safe deposit boxes at neighborhood
banks. Each of the 19 other repositories contains certain species of
plants, while this one contains backup versions of them all and is the
only one that stores animal germplasm.
The Fort Collins, Colorado, facility receives germplasm from ARS scientists
or other researchers and sometimes from private individuals who have
unique or old germplasm. Scientists from outside the United States also
deposit samples into the collection. Other researchers withdraw samples
to develop cultivars or to study the species.
"We are one of the largest, most effective genebanks in the world,"
says NCGRP director Henry L. Shands.
Even under the best storage conditions science can provide, germplasm
does not survive forever, and ARS scientists are trying to develop ways
to preserve it longer. Genebanks must periodically have the collections
grown out and fresh germplasm harvested to place back in the collection.
A Billion Seeds . . . and Growing
The center's plant focus is divided into two areas: the Seed Viability
and Storage Research Unit, run by plant physiologist Loren E. Wiesner,
and the Plant Germplasm Preservation Research Unit, run by plant physiologist
Christina T. Walters. Wiesner's job is to document and preserve seeds
and vegetatively propagated germplasm for long-term storage as well
as to determine the quality of the seeds. He is also responsible for
distributing the germplasm to the other repositories and sometimes to
researchers and breeders. Walters and her scientific staff represent
one of the few genebanks worldwide conducting research on how these
types of facilities can collect and store germplasm more efficiently.
Seeds at the NCGRP are stored at either –18° C (0° F)
or –150° C (–238° F). Liquid nitrogen (LN) storage
provides the lower of these two temperatures. LN storage slows deterioration
and gives seeds longer lifespans, but it is more expensive to use. Seeds
that survive well at –18° C do not need to be placed in LN,
but seeds that have shorter lifespans or are exceedingly valuable are
placed at these very low temperatures for safekeeping. Some plant germplasm
must be stored at LN temperatures to prevent ice from forming in cells.
Before storage, Wiesner has the technicians test the seeds for viability
and optimum moisture content. Seeds to be stored at –18° C
are put into standardized moisture-proof, plastic-lined foil bags and
then heat-sealed. A sample of seeds for LN storage is exposed to LN
vapor for 24 hours, and then germination is compared to that of unexposed
seeds. If there is a 10-percent decrease in the exposed group compared
to the control group, then the seeds are stored at –18° C rather
than in LN. The seeds that Wiesner places in LN are first placed in
plastic tubes consistent with the seed size and then put in the LN tanks.
About 10,000 square feet are reserved for LN storage and 7,500 square
feet for the –18° C storage, but the –18° C storage
area will need to be increased in the near future to handle the demands
for security backup storage.
Storing seeds at –18° C or in LN stresses them. Walters and
her staff look for ways to reduce that stress or to fix the damage.
They have found that seeds from tropical areas contain a lot of water
or have unusual lipids, and this makes them damage easily. An example
is Cuphea, which comes from Latin America and is valued in the
food industry for its medium-chain fatty acids (8 to 14 carbons rather
than the usual 16- or 18-carbon fatty acids). Some Cuphea seeds
were killed when stored at –18° C, but damage can be averted
by warming them in an incubator before they are germinated. Walters
reasoned that it was like olive oil left in a refrigerator; the oil
has to melt before you can mix it with vinegar.
Another new aspect of the NCGRP research is the work on plants native
to U.S. rangelands. "These plants are used to restore rangelands
that have been devastated by fire, and so far there is no program in
the United States to ensure that we have the plants we need," Walters
says.
Most crops grown in the United States actually originated abroad, brought
by immigrants from their native countries. But the United States still
has a lot of native plants that are useful, and ARS is trying to collect
them. Walters points out that many of the native plants produce medicines,
including one they studied that has been shown to help breast cancer
patients.
Preserving plants collected from the wild, like U.S. native species,
is more difficult than preserving crop seeds. Plants in the wild look
and behave differently, growing at different rates and flowering at
different times. The challenge to preserve these plants may be well
worth it, since they are a future source of genes that will make crops
more resistant to diseases, insects, and extreme weather.
The Animal Collection Is Taking Off
ARS' storage of animal germplasm is relatively new. A congressional
mandate called for the National Animal Germplasm Program (NAGP) to be
part of the whole germplasm system. In 1999, a task force suggested
the program be located within the National Seed Storage Laboratory in
order to share some of the same infrastructure.
Animal scientist Harvey D. Blackburn, who is in charge of the NAGP,
helped to usher in the first germplasm entry of 40 chicken lines in
2000. Since then, germplasm has been added from various breeds of dairy
and beef cattle, sheep, goats, and swine. They are also starting an
aquaculture collection with striped bass and catfish germplasm.
While the NAGP is run by ARS, more than 70 scientists are part of the
program. Many of them come from industry and universities as well as
from other government agencies. They make up the committees (swine,
dairy, beef, poultry, aquaculture, and small ruminants) that help decide
what breeds and lines within breeds should be added to the collection.
There is also a technical committee that advises on proper storage techniques.
At any one time, Blackburn is engaged in numerous projects that are
as unique as the animals he studies. For example, he is working with
the ARS Germplasm and Gamete Physiology Laboratory in Beltsville, Maryland,
on storage and transportation methods for boar semen. "We are trying
to find ways to better protect the cells during transport and processing,"
Blackburn explains.
Though the animal program is new, it has acquired older germplasm.
The collection contains semen from Hereford and Limousin bulls from
the 1950s, 1960s, and 1970s. The repository has also acquired semen
from a Holstein population founded in the 1960s. "This older material
is critical because it helps broaden the genetic base in the collection,
and it will be used to evaluate changes in a breed's genetic composition
over time," Blackburn says.
In the future, Blackburn wants to acquire
more species as well as increase the number of breeds representing
species he already has. The NCGRP is renovating to provide more space
for animal germplasm collection and research, in addition to acquiring
new analytical instrumentation
This research is part of Plant, Microbial, and Insect Genetic Resources,
Genomics and Genetic Improvement (#301) and of Food Animal Production
(#101), two ARS National Programs described on the World Wide Web at
http://www.nps.ars.usda.gov.
Henry L. Shands, Loren
E. Wiesner, Christina
T. Walters, and Harvey
D. Blackburn are with the USDA-ARS National
Center for Genetic Resources Preservation, 1111 South Mason, Fort
Collins, CO 80521; phone (970) 495-3200, fax (970) 221-1427.
"ARS Is Banking on Germplasm" was published in the
February 2003
issue of Agricultural Research magazine.
|