home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Decoding clover DNA leads to better livestock productivity


Western Australia
September 1, 2016


Scientists have cracked the genome sequence of the subterranean (sub) clover. Pictured are (l-r) Department of Agriculture and Food senior pasture breeder Dr Phil Nichols, UWA Molecular Biologist Dr Parwinder Kaur and UWA Centre for Plant Genetics and Breeding Director Professor William Erskine. Photo credit: Department of Agriculture and Food, Western Australia.

Western Australian and Japanese scientists have together cracked the genome sequence of the subterranean (sub) clover.

The project led by The University of Western Australia in collaboration with Department of Agriculture and Food, Murdoch University and the Kazusa DNA Research Institute, will revolutionise the development of new and improved forage legumes, which underpin the State’s $1.8 billion livestock industry.

Clovers are widely grown around the world as forage legumes for livestock and they add nitrogen to the soil which assists crop production.

Sub clover is the most important annual pasture legume in Australia, sown across an estimated 29 million hectares of agricultural land.

UWA Molecular Biologist Dr Parwinder Kaur said the challenge was not only to determine the sequence of sub clover DNA but to understand the genes from a functional point of view.

“The changes provide a breakthrough for breeding of future sub clovers which will increase agriculture production by increasing the health of the soil.

“This is the first genome sequence published for an annual clover and describes 85.4 per cent of the sub clover genome and contains 42,706 genes. It represents years of research and a commitment to creating new knowledge that will feed our future.”

Department senior pasture breeder and UWA Adjunct Associate Professor Phil Nichols said the discovery had important benefits for the agriculture industry.

“This work will allow the development of DNA markers that are closely associated with genes controlling traits of interest, which can be used in breeding programs to markedly improve selection efficiency, particularly for traits difficult to measure in the field or glasshouse,” Dr Nichols said.

“Such traits include resistance to redlegged earth mites and important diseases, hardseededness, tolerance to false breaks, early season growth under cool temperatures, phosphorus use efficiency, phtyo-oestrogen content, methanogenic potential in the rumen, flowering time and other traits related to biomass production.”

The work was funded through the Science and Innovation Award by Australian Department of Agriculture and Water Resources, Meat and Livestock Australia and the Australian Research Council.

UWA Centre for Plant Genetics and Breeding Director Professor William Erskine said this understanding of the sub clover genome would also aid breeding programs of other important pasture legumes with more complex genomes, such as white and red clovers, annual medics and lucerne.

The research paper has been published in the prestigious Nature journal Scientific Reports.



More news from:
    . Murdoch University
    . Western Australia, Department of Primary Industries
    . Kazusa DNA Research Institute


Website: http://www.murdoch.edu.au

Published: September 1, 2016

The news item on this page is copyright by the organization where it originated
Fair use notice

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Archive of the news section


Copyright @ 1992-2024 SeedQuest - All rights reserved