home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Organic farming leads to adaptations in the genetic material in plants - A study carried out at the University of Bonn shows how organically and conventionally farmed plants develop differently
Bio-Landbau führt bei Pflanzen zu Erbgut-Anpassungen - Studie der Uni Bonn zeigt, wie sich ökologisch und konventionell angebaute Pflanzen auseinanderentwickeln


Bonn,Germany
May 13, 2024

Plants adapt genetically over time to the special conditions of organic farming. This has been demonstrated in a long-term study conducted at the University of Bonn. The researchers planted barley plants on two neighboring fields and used conventional farming methods on one and organic methods on the other. Over the course of more than 20 years, the organic barley was enriched with specific genetic material that differed from the comparative culture. Among other things, the results demonstrate how important it is to cultivate varieties especially for organic farming. The results have now been published in the journal “Agronomy for Sustainable Development.”


Links die konventionelle Population, rechts die Biogerste:The conventional population on the left and the organic barley on the right: - Only experts can spot the differences with the naked eye. However, huge differences can be identified using molecular genetics. © Photo: AG Prof. Léon/University of Bonn

 

At the end of the 1990s, Prof. Dr. Jens Léon started an experiment at the University of Bonn that he knew would run for a long period of time. His research group wanted to investigate the effects that farming conditions have on genetic material in plants. To this end, they carried out a complex long-term study over a period of 23 years at the Institute of Crop Science and Resource Conservation (INRES). “We first crossed high-yield barley with a wild form to increase genetic variation,” says Léon. “We then planted these populations on two neighboring fields so that the barley grew in the same soil and under the same climatic conditions.”

The only difference was the farming method. Conventional farming was used in one of the fields where the researchers used pesticides to combat pests, chemical agents to eliminate weeds and mineral fertilizers to help ensure a good supply of nutrients. The researchers took a more ecological sound approach in the other field: no pesticides, combating weeds using mechanical methods and fertilizing the soil with manure from stables. Some of the grains were retained every fall to sow the fields the following spring – using the organic grains on the organic field and the barley grown under conventional conditions on the comparative field. “We didn’t choose the grains based on any particular characteristics, however, but simply selected a small part of the harvest at random,” emphasizes Léon’s colleague Dr. Michael Schneider.

Analyzing genome development in time-lapse

The researchers also analyzed the genomes of the conventionally and organically farmed plants on a yearly basis. Every single gene can exist in a variety of different forms called alleles. For example, the human gene responsible for eye color exists in the alleles “brown” and “blue.” The frequency with which certain alleles arise in a population can change over generations. Environmental conditions are one factor that plays a role in this process: Alleles that ensure plants thrive in their current environment are usually found more and more frequently.

The researchers identified two interesting trends in their genetic tests: In the first twelve years, the allele frequency in the barley changed in the same way on both fields. “Our interpretation of this finding is that the very diverse populations caused by a cross with wild barley were adapting to the local conditions,” says Dr. Agim Ballvora, who also participated in the study. “After all, factors such as the climate, soil and especially length of day were identical for both populations.” However, the allele frequencies of both cultures diverged increasingly in subsequent years. In particular, the barley grown using organic farming methods developed gene variants that were less sensitive to a nutrient deficit or lack of water – i.e., alleles that influenced the structure of the roots. “One reason for this is presumably the strong variations in the availability of nutrients in organic farming,” says Léon.

Genetic heterogeneity facilitates the adaptation process

The conventionally farmed barley also became more genetically uniform over time, meaning that the genetic material in the individual plants grown on the field became more and more similar from year to year. However, the organic barley remained more heterogeneous. The allele frequencies of the organic culture also varied more widely over time. This resulted in some years being extremely favorable or unfavorable for some alleles. This could be because the environmental conditions fluctuate much more in organic farming than with conventional framing methods: If certain plant diseases take hold in one year, for example, the plants will rely most on those alleles that will protect them. The variability of the environmental forces acting on the plants seems to lead to greater genetic heterogeneity. “As a result, the plants are better able to adapt to these types of changes,” says Léon.

Overall, the results demonstrate the importance of cultivating varieties optimized for organic farming. As their genetic makeup has adapted to these conditions, they will be more robust and deliver higher yields. “Furthermore, it seems to make sense when cultivating plants to cross breed them with older or even wild varieties,” explains Léon. “Our data also indicate that this could even benefit conventional high-yield varieties.” 

Sponsorship

The study was funded by the German Research Foundation (DFG).

Publication

Michael Schneider, Agim Ballvora and Jens Léon: Deep genotyping reveals specific adaptation footprints of conventional and organic farming in barley populations - an evolutionary plant breeding approach; Agronomy for Sustainable Development; https://doi.org/10.1007/s13593-024-00962-8

 



Bio-Landbau führt bei Pflanzen zu Erbgut-Anpassungen - Studie der Uni Bonn zeigt, wie sich ökologisch und konventionell angebaute Pflanzen auseinanderentwickeln

Pflanzen passen sich mit der Zeit genetisch an die speziellen Verhältnisse der Bio-Landwirtschaft an. Das zeigt eine Langzeit-Studie an der Universität Bonn. Forscher bauten auf zwei benachbarten Feldern Gerstenpflanzen an; einmal unter konventionellen und einmal unter ökologischen Bedingungen. Im Laufe von mehr als 20 Jahren reicherten sich in der Bio-Gerste ganz spezifische Erbanlagen an - andere als in der Vergleichs-Kultur. Die Ergebnisse demonstrieren unter anderem, wie wichtig es ist, Sorten speziell für die Bio-Landwirtschaft zu züchten. Die Ergebnisse sind nun in der Zeitschrift „Agronomy for Sustainable Development“ erschienen.
 

Links die konventionelle Population, rechts die Biogerste:Links die konventionelle Population, rechts die Biogerste: - Mit dem Auge sind Unterschiede nur für Fachleute erkennbar. Mit Hilfe der Molekulargenetik lassen sich aber große Unterschiede nachweisen. © Foto: AG Prof. Léon/Uni Bonn
 

Alle Bilder in Originalgröße herunterladen Der Abdruck im Zusammenhang mit der Nachricht ist kostenlos, dabei ist der angegebene Bildautor zu nennen.

Ende der 1990er Jahre startete Prof. Dr. Jens Léon an der Universität Bonn ein Experiment, von dem er wusste, dass es einen langen Atem erfordern würde. Seine Arbeitsgruppe wollte darin der Frage nachgehen, welche Auswirkung die Anbaubedingungen auf die Erbanlagen von Pflanzen haben. Über einen Zeitraum von 23 Jahren führten sie dazu am Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES) eine aufwändige Langzeit-Studie durch. „Zunächst haben wir Hochleistungs-Gerste mit einer Wildform gekreuzt, um die genetische Variation zu erhöhen“, sagt Léon. „Dann haben wir diese Population auf zwei benachbarten Feldern angebaut. Die Gerste wuchs also auf demselben Boden und unter denselben klimatischen Bedingungen.“

Was sich unterschied, waren die Anbaumethoden: Eines der Felder wurde konventionell bewirtschaftet. Auf ihm rückten die Forscher Schädlingen mit Pestiziden zu Leibe, beseitigten Unkräuter mit chemischen Mitteln und sorgten mit Hilfe von Mineraldünger für eine gute Versorgung mit Nährstoffen. Auf dem anderen Feld gingen sie umweltverträglicher zu Werke: ohne Pestizide, mit mechanischen Methoden zur Unkraut-Bekämpfung und durch Düngung mit Stallmist. In jedem Herbst behielten sie einen Teil des Korns, um es im nächsten Frühjahr wieder auszusäen - die Öko-Samen auf dem Öko-Acker, die unter konventionellen Bedingungen gewachsenen auf dem Vergleichsfeld. „Dabei selektierten wir nicht auf bestimmte Eigenschaften, sondern nahmen dazu einfach zufällig einen kleinen Teil der Ernte“, betont Léons Mitarbeiter Dr. Michael Schneider.

Jährlicher Blick ins Genom

Jahr für Jahr analysierten die Forscher zudem das Genom der konventionell und ökologisch angebauten Pflanzen. Jede einzelne Erbanlage kann in unterschiedlichen Varianten vorkommen, die als Allele bezeichnet werden. So existiert beim Menschen ein Gen für die Augenfarbe in den Allelen „braun“ und „blau“. Die Häufigkeit, mit der bestimmte Allele vorkommen, kann sich mit der Zeit verschieben. Dabei spielen unter anderem die Umweltbedingungen eine Rolle: Allele, die dafür sorgen, dass Pflanzen in ihrer Umgebung besser gedeihen, werden in der Regel häufiger.

Bei den genetischen Untersuchungen zeigten sich nun zwei interessante Trends: In den ersten zwölf Jahren veränderte sich die Allel-Häufigkeit der Gerste auf beiden Feldern in dieselbe Richtung. „Wir interpretieren das als eine Anpassung der durch die Einkreuzung mit Wildgerste sehr diversen Populationen an die Standortverhältnisse“, sagt Dr. Agim Ballvora, der ebenfalls an der Studie beteiligt war. „Faktoren wie Klima, Boden und insbesondere Tageslängen waren ja für beide Populationen identisch.“ In den Jahren danach entwickelten sich die Allel-Frequenzen der beiden Kulturen jedoch zunehmend auseinander. So reicherten sich unter Öko-Bedingungen vor allem Genvarianten an, die für eine geringere Empfindlichkeit gegen Nährstoff- oder Wassermangel sorgen - also etwa Allele, die die Struktur der Wurzel beeinflussen. „Ein Grund dafür ist vermutlich die stärker schwankende Nährstoff-Verfügbarkeit im Ökolandbau“, meint Léon.

Genetische Heterogenität erleichtert die Anpassung

Die konventionell angebaute Gerste wurde zudem mit der Zeit genetisch immer einheitlicher; die einzelnen Pflanzen auf dem Feld ähnelten sich also hinsichtlich ihres Erbguts von Jahr zu Jahr stärker. Bei der Bio-Gerste blieb die Heterogenität dagegen höher. Auch im zeitlichen Verlauf schwankten die Allelhäufigkeiten in der Ökokultur stärker. Das heißt, dass sich in manchen Jahren andere Allele anreicherten. Grund dafür könnte sein, dass die Umweltbedingungen im Biolandbau stärkeren Schwankungen unterliegen als bei konventionellen Anbaumethoden: Wenn etwa in einem Jahr der Befall mit bestimmten Pflanzenkrankheiten zunimmt, sind Allele besonders gefragt, die die Pflanze dagegen schützen. Die Variabilität ihrer Umwelt zwingt die Pflanzen also quasi zu mehr genetischer Heterogenität. „Denn dadurch fällt es ihnen leichter, sich auf derartige Veränderungen einzustellen“, sagt Léon.

Insgesamt zeigen die Ergebnisse, wie sinnvoll die Züchtung von Sorten ist, die für den Biolandbau optimiert sind. Denn sie sind aufgrund ihrer an diese Bedingungen angepassten genetischen Ausstattung robuster und versprechen höhere Erträge. „Zudem scheint es sich zu lohnen, bei der Züchtung auch ältere Sorten oder sogar Wildformen einzukreuzen“, erklärt Léon. „Davon können unseren Daten zufolge selbst konventionelle Hochleistungssorten profitieren.“ 

Förderung

Die Studie wurde von der Deutschen Forschungsgemeinschaft (DFG) gefördert.

 

Publikation

Michael Schneider, Agim Ballvora und Jens Léon: Deep genotyping reveals specific adaptation footprints of conventional and organic farming in barley populations - an evolutionary plant breeding approach; Agronomy for Sustainable Development; https://doi.org/10.1007/s13593-024-00962-8

 



More news from: University of Bonn


Website: http://www3.uni-bonn.de/

Published: May 13, 2024

The news item on this page is copyright by the organization where it originated
Fair use notice

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Archive of the news section


Copyright @ 1992-2024 SeedQuest - All rights reserved