home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
Forum Page

Forum
Forum sources  
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
 

What is the cost of vertical farming?


Wageningen, The Netherlands
April 16, 2019


What is the cost of vertical farming?
 

How can vertical farming contribute to (inter)national food production? This question is more complex than it initially seems. The answer does not only depend on the production, but also on the costs for water, energy and CO2. The Greenhouse Horticulture Business Unit of Wageningen University & Research and TU Delft are investigating the feasibility of this new production system.

Take a head of lettuce for example: how much does it cost to produce one? The answer is fairly well known when it comes to cultivation in greenhouses in the Netherlands. Greenhouse models and growth models can be used to predict the production at a certain consumption of water, energy and CO2. Those models are not suitable, however, for cultivation in a vertical farm. The combination of high-density crop production and a closed construction necessitates a different approach with respect to heat, cooling and dehumidification.

The key question when comparing both cultivation systems is: how much energy does a vertical farm need? The required amount of water and CO2 can be reduced compared to a 'traditional' greenhouse, but this is not the case for the cooling and dehumidification demand. The high internal heat load and the lack of natural ventilation ensure a high cooling demand, which consequently results in residual heat.

Using residual heat in the city

The question is whether this residual heat could be used in the surrounding urban environment. One of the key features of vertical farming is that it can take place in the city, which would allow it to exchange energy with other users. Those other users could become customers of the residual heat from the vertical farm.

Feasibilty of vertical farms in five steps

WUR and TU Delft have joined forces to calculate the feasibility of vertical farms in five steps. The first step investigates how plants process energy in a closed cultivation system. The second step concerns the total energy demand: how much energy does vertical farming need? Step three focuses on optimising this energy consumption and step four on the integration of the vertical farm into the city. Ultimately, this information is used in step five to calculate the financial feasibility of (urban) vertical farming. The research project will be completed by the end of 2019.

This work was supported jointly by Staay Food Group, Westland Infra and the Top Sector Horticulture & Propagation Materials (EU-2016-01) via EFRO Fieldlab Freshteq.



More news from: Wageningen University & Research


Website: http://www.wur.nl

Published: April 19, 2019



SeedQuest does not necessarily endorse the factual analyses and opinions
presented on this Forum, nor can it verify their validity.

 

 

12 books on plant breeding, classic, modern and fun
 

12 livres sur l'amélioration des plantes : classiques, modernes et amusants

 
 

The Triumph of Seeds

How Grains, Nuts, Kernels, Pulses, and Pips Conquered the Plant Kingdom and Shaped Human History

By Thor Hanson 

Basic Books

 
 

 

 

Hybrid
The History and Science of Plant Breeding
 

Noel Kingsbury
The University of Chicago Press

 

 
1997-2009 archive
of the FORUM section
.

 


Copyright @ 1992-2024 SeedQuest - All rights reserved