Phoenix, Arizona
February 7, 2008
Source:
The University
of Arizona
A pest insect known as bollworm is
the first to evolve resistance in the field to plants modified
to produce an insecticide called Bt, according to a new research
report.
Bt-resistant populations of bollworm, Helicoverpa zea,
were found in more than a dozen crop fields in Mississippi and
Arkansas between 2003 and 2006.
"What we're seeing is evolution in action," said lead researcher
Bruce
Tabashnik. "This is the first documented case of
field-evolved resistance to a Bt crop.”
Bt crops are so named because they have been genetically altered
to produce Bt toxins, which kill some insects. The toxins are
produced in nature by the widespread bacterium Bacillus
thuringiensis, hence the abbreviation Bt.
The bollworm resistance to Bt cotton was discovered when a team
of University of Arizona entomologists
analyzed published data from monitoring studies of six major
caterpillar pests of Bt crops in Australia, China, Spain and the
U.S. The data documenting bollworm resistance were first
collected seven years after Bt cotton was introduced in 1996.
"Resistance is a decrease in pest
susceptibility that can be measured over human experience," said
Tabashnik, professor and head of UA's entomology department and
an expert in insect resistance to insecticides. "When you use an
insecticide to control a pest, some populations eventually
evolves resistance."
The researchers write in their report that Bt cotton and Bt corn
have been grown on more than 162 million hectares (400 million
acres) worldwide since 1996, “generating one of the largest
selections for insect resistance ever known."
Even so, the researchers found that most caterpillar pests of
cotton and corn remained susceptible to Bt crops.
"The resistance occurred in one particular pest in one part of
the U.S.," Tabashnik said. "The other major pests attacking Bt
crops have not evolved resistance. And even most bollworm
populations have not evolved resistance."
The field outcomes refute some
experts' worst-case scenarios that predicted pests would become
resistant to Bt crops in as few as three years, he said.
“The only other case of field-evolved resistance to Bt toxins
involves resistance to Bt sprays," Tabashnik said. He added that
such sprays have been used for decades, but now represent a
small proportion of the Bt used against crop pests.
The bollworm is a major cotton pest in the southeastern U.S. and
Texas, but not in Arizona. The major caterpillar pest of cotton
in Arizona is a different species known as pink bollworm,
Pectinophora gossypiella, which has remained susceptible to the
Bt toxin in biotech cotton.
Tabashnik and his colleagues' article, "Insect resistance to Bt
crops: evidence versus theory," will be published in the
February issue of Nature Biotechnology. His co-authors are Aaron
J. Gassmann, a former UA postdoctoral fellow now an assistant
professor at Iowa State University; David W. Crowder, a UA
doctoral student; and
Yves Carrière, a UA professor of entomology. Tabashnik and
Carrière are members of UA's BIO5 Institute.
The U.S. Department of Agriculture funded the research.
"Our research shows that in Arizona, Bt cotton reduces use of
broad-spectrum insecticides and increases yield," said Carrière.
Such insecticides kill both pest insects and beneficial insects.
To delay resistance, non-Bt crops are planted near Bt crops to
provide "refuges" for susceptible pests. Because resistant
insects are rare, the only mates they are likely to encounter
would be susceptible insects from the refuges. The hybrid
offspring of such a mating generally would be susceptible to the
toxin. In most pests, offspring are resistant to Bt toxins only
if both parents are resistant.
In bollworm, however, hybrid offspring produced by matings
between susceptible and resistant moths are resistant. Such a
dominant inheritance of resistance was predicted to make
resistance evolve faster.
The UA researchers found that bollworm resistance evolved
fastest in the states with the lowest abundance of refuges.
The field outcomes documented by the global monitoring data fit
the predictions of the theory underlying the refuge strategy,
Tabashnik said.
Although first-generation biotech cotton contained only one Bt
toxin called Cry1Ac, a new variety contains both Cry1Ac and a
second Bt toxin, Cry2Ab. The combination overcomes pests that
are resistant to just one toxin.
The next steps, Tabashnik said, include conducting research to
understand inheritance of resistance to Cry2Ab and developing
designer toxins to kill pests resistant to Cry1Ac.
Researchers' disclosure of competing financial interests:
Although preparation of this article was not supported by
organizations that may gain or lose financially through its
publication, the authors have received support for other
research from Monsanto Company and Cotton, Inc. One of the
authors (Bruce Tabashnik) is a co-author of a patent application
filed with the World Intellectual Property Organization on
engineering modified Bt toxins to counter pest resistance, which
is related to research published in 2007 (Science 318:
1640-1642. 2007).
Certains insectes deviendraient-ils résistants au
coton Bt ? |
Source:
Débats et Echanges sur les Biotechnologies en Agriculture (DEBA)
Flash Biotech Actu, Février 2008
Les zones refuges et l’introduction d’un gène
supplémentaire assurent une prévention efficace
Un article publié ce
mois-ci dans Nature Biotechnology Journal mentionne
la découverte, par Bruce Tabashnick et des
chercheurs de l’Université d’Arizona, d’un insecte
ravageur résistant au coton biotechnologique Bt.
L’étude présentée ne signale pas d’autres cas
d’insectes résistants et conclut sur la nécessité de
respecter des zones de refuge freinant leur
émergence. Elle souligne également que les nouvelles
variétés de coton Bt limitent la probabilité
d’apparition de résistance.
Conçu il y a une dizaine d’années pour résister à
l’attaque d’insectes foreurs, le coton Bt a reçu à
cet effet un gène issu d’une bactérie qui produit
une toxine (Cry1Ac).
Il a été utilisé sur 162 millions d’hectares depuis
1996. Les insectes comme les bactéries et les virus
développent au fil des générations la capacité à
résister à des toxines, des produits chimiques, des
antibiotiques, etc. L’apparition d’insectes
capables de résister à la toxine, et donc de
s’attaquer à la plante, n’est pas une nouveauté
propre au coton Bt ou à toute autre plante
biotechnologique. Des insectes résistants aux
pulvérisations de la bactérie contenant le gène
Cry1Ac ont déjà été observés sur des productions
biologiques.
Dans le cas précis du coton Bt, des études ont
montré que des variations de réponses chez les
insectes foreurs existent vis-à-vis de la
technologie Bt avec des comportements de survie
constatée, sans que l’on puisse parler pour autant
de « résistance » ou d’échec de la technologie Bt.
C’est notamment la conclusion de Randy Luttrel*,
chercheur de l’Université d’Arkansas, qui a mesuré
la susceptibilité de résistance d’insectes sur le
coton Bt entre 1992 et 2007. Ce sont d’ailleurs ces
mêmes données qui ont été utilisées et interprétées
dans les travaux publiés par le Nature Biotechnology
Journal avec une conclusion différente.
L’étude présentée par Bruce Tabashnick ne relève pas
de perte de rendement et ne signale pas d’autres cas
d’insectes résistants dans les différents Etats
américains. Elle insiste, à l’instar de tous les
spécialistes ayant abordé le sujet, sur l’efficacité
des stratégies de gestion des résistances, en
particulier la nécessaire mise en place de zones de
refuge – semées avec des cultures non-OGM - qui
permettent de retarder considérablement l’apparition
d’insectes résistants. Elle explique enfin que les
nouvelles variétés de coton Bt contiennent non pas
un, mais deux gènes de résistance (donc deux toxines
Bt), ce qui réduit encore la probabilité
d’apparition de résistance.
À ce jour, l’apparition de résistance d’insectes
n’a été observée sur aucune autre plante
biotechnologique utilisant la technologie Bt.
Pour en savoir plus : Les liens vers :
• Nature Biotechnology Article:
http://www.nature.com/nbt/journal/v26/n2/full/nbt1382.htm
• University of Arizona Press Release:
http://uanews.org/node/18178
•
http://agfax.com/news/2008/02/btresist0208.htm
•
http://www.gmo-safety.eu/en/news/618.docu.html
Other news
from Débats et Echanges sur les Biotechnologies en Agriculture (DEBA) |
|
|